ELSEVIER

Contents lists available at ScienceDirect

Carbohydrate Research

journal homepage: www.elsevier.com/locate/carres

Structure of a polysaccharide from the lipopolysaccharide of *Vibrio vulnificus* CECT4602 containing 2-acetamido-2,3,6-trideoxy-3-[(*S*)- and (*R*)-3-hydroxybutanoylamino]-L-mannose

Yuriy A. Knirel ^{a,*}, Sof ya N. Senchenkova ^a, Alexander S. Shashkov ^a, Consuelo Esteve ^b, Elena Alcaide ^b, Susana Merino ^c, Juan M. Tomás ^c

ARTICLE INFO

Article history: Received 2 December 2008 Received in revised form 10 December 2008 Accepted 12 December 2008 Available online 25 December 2008

Keywords: Lipopolysaccharide Bacterial polysaccharide structure 2,3-Diamino-2,3,6-trideoxy-L-mannose 3-Hydroxybutanoyl group Vibrio vulnificus

ABSTRACT

A polysaccharide was isolated by GPC after mild acid treatment of the lipopolysaccharide of *Vibrio vulnificus* CECT4602 and found to contain L-Rha, D-GlcpNAc and 2-acetamido-2,3,6-trideoxy-3-(3-hydroxybutanoylamino)-L-mannose (L-RhaNAc3NHb). GLC analysis of the trifluoroacetylated (S)-2-octyl esters derived by full acid hydrolysis of the polysaccharide showed that $\sim\!80\%$ of the 3-hydroxybutanoic acid has the S configuration and $\sim\!20\%$ the R configuration. The following structure of the polysaccharide was established by 1 H and 13 C NMR spectroscopies, including 2D ROESY and 1 H/ 13 C HMBC experiments:

 β -L-RhapNAc3NHb-(1 \rightarrow 3) $_{|}$ \rightarrow 4)- α -D-GlcpNAc-(1 \rightarrow 3)- α -L-Rhap-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A Gram-negative bacterium *Vibrio vulnificus* is able to infect fish and humans causing a disease called vibriosis. Human vibriosis occurs after infection of pre-existing wounds with seawater, after injury while fishing or handling fish or after ingestion of raw seafood.¹ The disease can lead to septicaemia and death depending on the host innate defences status.¹ Fish vibriosis is produced by gill or intestine colonisation, after immersion in contaminated water or after contact with diseased fish or carriers.^{2,3}

Based on phenotypic characteristics and host range criteria, *V. vulnificus* isolates were primarily grouped into two biotypes:⁴ indole⁺ and ornithine decarboxylase⁺ (ODC⁺) biotype 1 strains associated with pathogenicity in humans and indole⁻ and ODC⁻ biotype 2 strains pathogenic for eels. Later, this subdivision has been questioned in several studies which showed that indole⁻ and ODC⁻ strains were pathogenic also for humans as well as the existence of indole⁺ and/or ODC⁺ strains which were pathogenic for eels. On the other hand, a third *V. vulnificus* biotype has been described in Israel⁵ and comprises cellobiose-negative strains isolated from patients who handled Saint Peter's fish (*Tilapia* sp.).

All biotypes of *V. vulnificus* are potentially pathogenic for humans, but biotype 1 strains are most frequently isolated from clinical specimens. Eel-pathogenic *V. vulnificus* (formerly biotype 2) strains have been subdivided into four O-antigenic groups, including serovars A, E (O4), O3 and O3/O4. Serovar E strains (VSE) are distributed worldwide and primarily considered as a pathogen of eels (vibriosis) and secondary of humans. VSE strains are homogeneous in respect to the lipopolysaccharide (LPS) O-antigen.

In this report we characterise, for the first time, a polysaccharide from the LPS of a VSE representative strain *V. vulnificus* CECT4602.

2. Results and discussion

The lipopolysaccharide was isolated by phenol/water extraction of dried cells of *V. vulnificus* CECT4602. A high-molecular-mass polysaccharide was released by mild acid degradation of the lipopolysaccharide with dilute acetic acid and isolated by GPC on Sephadex G-50.

Sugar analysis of the polysaccharide by GLC of the alditol acetates derived after full acid hydrolysis of the polysaccharide revealed Rha, GlcN and a 2,3-diamino-2,3,6-trideoxyhexose. Determination of the absolute configurations by GLC of the acetylated (*S*)-2-octyl glycosides indicated that GlcN is D and Rha is L.

^a N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia

^b Departamento de Microbiología y Ecología, Universidad de València, E-46100 Burjassot, Valencia, Spain

^c Departamento Microbiología, Facultad Biología, Universidad de Barcelona, E-08071 Barcelona, Spain

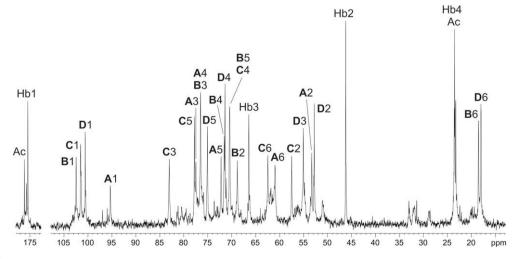
^{*} Corresponding author. Tel.: +7 499 1376148; fax: +7 499 1355328. E-mail address: knirel@ioc.a.ru (Y.A. Knirel).

The diamino sugar was identified as 2,3-diamino-2,3,6-trideoxy-L-rhamnose (L-RhaN3N) by GLC-MS of the trifluoroacetylated (S)-2-octyl glycosides and comparison with the authentic samples of L-RhaN3N derived from the O-polysaccharide of *Proteus penneri* 2.⁸ In addition to the monosaccharide, 3-hydroxybutanoic acid was found in the polysaccharide hydrolysate and shown to be a 4:1 mixture of the S and R isomers by GLC of the trifluoroacetylated (S)-2-octyl esters.

The 13 C NMR spectrum of the polysaccharide (Fig. 1) showed signals for four anomeric carbons at δ 95.3, 100.5, 101.5 and 102.4, two CH₃–C groups (C-6) of Rha and RhaN3N at δ 18.0 and 18.5, two HOCH₂–C groups (C-6) of GlcN at δ 60.9 and 62.4, four nitrogen-bearing carbons at δ 52.8, 53.3, 55.0 and 57.5, other sugar ring carbons at δ 68.8–83.0, one N-(3-hydroxybutanoyl) group at δ 23.3 (CH₃), 46.2 (CHOH) and 66.4 (CH₂), three N-acetyl groups at δ 23.5–23.6 (CH₃) and the corresponding CO groups at δ 175.4–176.2. The 1 H NMR spectrum of the polysaccharide contained five low-field signals, including four signals for anomeric protons at δ 4.52, 4.87, 4.98 and 5.06 and one non-anomeric proton at δ 4.58 (H-2 of RhaN3N, see below), two CH₃–C groups (H-6) of Rha and RhaN3N at δ 1.25 and 1.35, other sugar protons at 3.29–4.02, one N-(3-hydroxybutanoyl) group at δ 1.14 (CH₃), 2.36 (CHOH) and 4.17 (CH₂) and three N-acetyl groups at δ 2.02–2.04.

The ^1H and ^{13}C NMR spectra of the polysaccharide were assigned using 2D $^1\text{H}/^1\text{H}$ COSY, TOCSY and $^1\text{H}/^{13}\text{C}$ NMR spectroscopy (Table 1). Spin systems for α -Rha, α -GlcN, β -GlcN and β -RhaN3N were revealed by tracing connectivity from H-1 for GlcN and from H-1, H-2 and H-6 for Rha and RhaN3N. The ^1H NMR signals within each spin system were assigned using COSY. The amino sugars were confirmed by correlation of protons at the nitrogen-bearing carbons to the corresponding carbons resonating in the region δ 52–58. $^3J_{\text{H,H}}$ coupling constants confirmed the configurations and the pyranose form of the monosaccharides as well as the configurations of the GlcN linkages. The α configuration of Rha 9 and β configuration of RhaN3N 8 were inferred by comparison of the ^1H and ^1C NMR chemical shifts with published data for the α - and β -anomers of the corresponding free monosaccharides.

A downfield position of the signals for C-3 of α -Rha, C-3 and C-4 of α -GlcN to δ 76.5–77.5 and C-3 of β -GlcN to δ 83.0, as compared with those of the corresponding non-substituted monosaccharides at δ 71.3–72.0 and 75.1, respectively, demonstrated the glycosylation pattern of the constituent sugars with the α -GlcN residue at the branching point. The ¹³C NMR chemical shifts for C-2–C-6 of β -RhaN3N in the polysaccharide were similar to those of free β -


RhaNAc3NAc, ⁹ thus confirming the terminal position of this monosaccharide in the side chain.

Sequence analysis was carried out by a 1 H/ 13 C HMBC experiment (Fig. 2), which revealed the following correlations between the anomeric protons and protons at the linkage carbons: RhaN3N H-1, α -GlcN H-3; α -GlcN H-1, α -Rha H-3; α -Rha H-1, β -GlcN H-3 and β -GlcN H-1, α -GlcN H-4. These data define the arrangement of the monosaccharides in the branched tetrasaccharide repeating unit of the polysaccharide, which was confirmed by a 2D ROESY experiment (data not shown).

For confirmation of the N-acylation pattern, 1D 1 H NMR and 2D 1 H/ 1 H NMR spectra of the polysaccharide were run in a 17:3 H₂O-D₂O mixture to enable detection of resonances of nitrogen-linked protons in the region δ 7.1–8.6 (Fig. 3). The assignment of the NH protons was performed using COSY and TOCSY experiments and their NOE correlations were analysed using a ROESY experiment (Fig. 3). From them, all NH-2 protons resonating at δ 7.18, 7.83 and 8.54 gave strong cross-peaks with CH₃ of *N*-acetyl groups at δ 2.02–2.04. The NH-3 proton of RhaN3N at δ 8.10 showed only a weak peak with an *N*-acetyl group but a strong cross-peak with CH₂ of the *N*-(3-hydroxybutanoyl) group at δ 2.36. Therefore, the 3-hydroxybutanoyl group is located at N-3 of RhaN3N whereas the amino groups at position 2 of RhaN3N and both GlcN residues are N-acetylated.

The data obtained suggest that the polysaccharide from V. vulnificus CECT4602 has the structure shown in Chart 1. A peculiar feature of the polysaccharide is the presence of a new monosaccharide derivative L-RhaNAc3NHb. Earlier, the di-N-acetyl derivative of 2,3-diamino-2,3,6-trideoxy-L-mannose has been found in the O-specific polysaccharide of Proteus penneri 2 (O66)8 and capsular polysaccharide of Escherichia coli K48.¹⁰ 2-Acetamido-2,3,6-trideoxy-3-formamido-p-mannose has been reported as a component of the O-specific polysaccharide of Escherichia coli O119.11 Remarkably, in *V. vulnificus* CECT4602, the major part (\sim 80%) of RhaN3N is 3-N-acylated with the (S)-3-hydroxybutanoyl group and the rest with the corresponding R isomer. While, in most cases of the occurrence of the N-(3-hydroxybutanovl) group in bacterial polysaccharides, it has been identified as a single isomer, both R and S isomers in a 3:1 ratio have been reported in a polysaccharide from Sinorhizobium fredii HH103. 12

V. vulnificus CECT4602 is the first VSE representative strain with a defined structure of a polysaccharide from the LPS. The data obtained will be helpful for isolation of LPS O-polysaccharide mutants for studies of interaction between the O-antigens and the innate

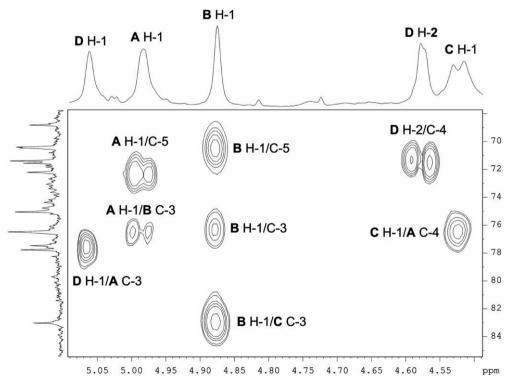

Figure 1. 125-MHz ¹³C NMR spectrum of the polysaccharide from *Vibrio vulnificus* CECT4602. Region of the CO resonance is not shown. Arabic numerals refer to carbons in sugar residues denoted by letters as shown in Table 1.

Table 1 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR data of the polysaccharide from Vibrio vulnificus CECT4602

Sugar residue	Atom	δ_{C}	δ_{H}	Inter-residue correlations	
				NOE (ROESY) ^a	³ J _{H,C} (HMBC) ^b
\rightarrow 3,4)- α -D-GlcpN-(1 \rightarrow	1	95.3	4.98	A1/B2	A1/B3
A	2	53.3	3.93	A1/B3	A 3/ D 1
	3	77.5	4.02		
	4	76.5	3.91		
	5	72.2	3.97		
	6	60.9	3.68, 3.81		
NAc	1	175.4			
	2	23.6	2.04		
\rightarrow 3)- α -L-Rhap-(1 \rightarrow	1	102.4	4.87	B 1/ C 3	B 1/ C 3
В	2	68.8	3.88		
	3	76.5	3.79		
	4	71.5	3.49		
	5	70.4	4.02		
	6	18	1.25		
\rightarrow 3)- β -D-GlcpN-(1 \rightarrow	1	101.5	4.52	C1/A4	C1/A4
c	2	57.5	3.84	·	C3/B1
	3	83	3.69		,
	4	70.4	3.56		
	5	77.8	3.4		
	6	62.4	3.84. 3.89		
NAc	1	176.2°			
	2	23.5	2.02		
β-L-RhapN3N-(1→	1	100.5	5.06	D 1/ A 3	
D	2	52.8	4.58	·	
	3	55.0	4.00		
	4	71.4	3.29		
	5	75	3.52		
	6	18.5	1.35		
NAc	1	175.7 ^c			
	2	23.5	2.02		
NHb	1	175.4			
	2	46.2	2.36		
	3	66.4	4.17		
	4	23.3	1.14		

Arabic numerals refer ato protons or before slash to protons and after slash to carbons in sugar residues denoted by letters.

^c Assignment could be interchanged.

Figure 2. Part of a ¹H, ¹³C HMBC spectrum of the polysaccharide from *Vibrio vulnificus* CECT4602 showing correlations for anomeric protons. The corresponding parts of the ¹H and ¹³C NMR spectra are displayed along the horizontal and vertical axes, respectively. Letters denote sugar residues as shown in Table 1.

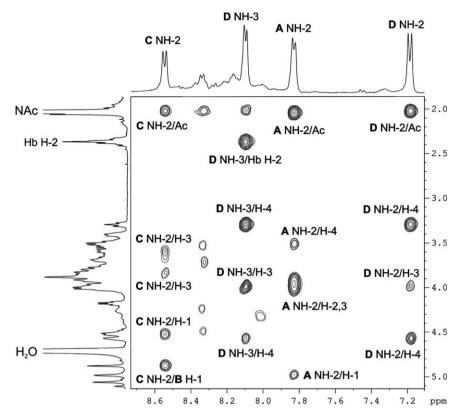
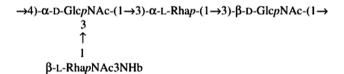



Figure 3. Part of a 2D ROESY spectrum of the polysaccharide from *Vibrio vulnificus* CECT4602 showing correlations for nitrogen-linked protons. The corresponding parts of the 1 H NMR spectrum are displayed along the axes. The spectra were measured in a 17:3 $H_{2}O-D_{2}O$ mixture. Letters denote sugar residues as shown in Table 1.

Chart 1. The polysaccharide from *Vibrio vulnificus* CECT4602. Hb stands for (S)- and (R)-3-hydroxybutanoyl (4:1, respectively).

defences, which could be crucial in the case of *V. vulnificus* as the innate defences are fundamental to avoid septicaemia.

3. Experimental

3.1. Growth conditions and isolation of the lipopolysaccharide and the polysaccharide

V. vulnificus CECT4602, a VSE representative strain from the Spanish National Collection isolated from a diseased fish, was grown on Tryptone broth (1% tryptone, 1% NaCl) at pH 7.2 and at the optimal growth temperature 28 °C for 24 h. Bacterial cells were obtained from 50 L culture by centrifugation, resuspended in 200 mL water, extensively dialysed against tap water, centrifuged and dried.

Dried cells (5 g) were extracted with hot 45% aq phenol as described, ¹³ after dialysis of the combined water and phenol layers, contaminations were precipitated by adding 50% aq trichloroacetic acid, the supernatant was dialysed and lyophilised to give the lipopolysaccharide in a 4.7% yield of the dried cells weight.

A portion of the lipopolysaccharide (105 mg) was degraded with 2% HOAc for 2 h at 100 °C, a precipitate was removed by centrifugation (13,000g, 20 min), and the supernatant was fractionated on a column (50×2.5 cm) of Sephadex G-50 (S) in pyridinium acetate buffer, pH 4.5, (4 mL pyridine and 10 mL AcOH

in 1 L water) with monitoring using a Knauer differential refractometer. A high-molecular-mass polysaccharide was isolated in a yield 38% of the lipopolysaccharide weight.

3.2. Sugar analysis

The polysaccharide was hydrolysed with 2 M trifluoroacetic acid (120 °C, 2 h). After evaporation, the monosaccharides were converted into the alditol acetates and analysed by GLC on a Hewlett-Packard 5890 chromatograph equipped with a HP-5ms column, carrier gas N₂, using a temperature gradient of 160-290 °C at 10 °C min⁻¹. For determination of the absolute configuration of the monosaccharides,14 the polysaccharide hydrolysate was peracetylated, subjected to methanolysis (MeOH/2 M HCl, 85 °C, 2 h), peracetylated, treated with (S)-2-octanol/1 M HCl (100 °C, 2 h), peracetylated and analysed by GLC-MS using an MSD 5975 instrument (Agilent) equipped with a HP-5ms column, carrier gas He, using a temperature gradient of 150 °C (3 min) to 320 °C at $5\,^{\circ}\text{C min}^{-1}$. For determination of the absolute configuration of 3hydroxybutanoic acid, the polysaccharide hydrolysate was reacted with (S)-2-octanol/1 M HCl (100 °C, 2 h), acylated with trifluoroacetic anhydride (65 °C, 2 h) and analysed by GLC-MS as above using a temperature gradient of 100 °C (3 min) to 320 °C at 5 °C min⁻¹.

3.3. NMR spectroscopy

NMR spectra were obtained on a Bruker DRX-500 spectrometer using standard Bruker software at 40 °C in 99.95% D_2O or a 17:3 H_2O-D_2O mixture. Prior to the measurements in D_2O , samples were deuterium-exchanged by freeze-drying twice from 99.9% D_2O . A mixing time of 200 and 100 ms was used in 2D TOCSY and ROESY experiments, respectively. Chemical shifts are referenced to internal TSP (δ_H 0.00) or acetone (δ_C 31.45).

Acknowledgements

Authors thank Mr. H. Moll (Research Center Borstel, Germany) for help with GLC–MS. This work was supported in part by Plan Nacional de I + D and FIS Grants (Ministerio de Educación, Ciencia y Deporte and Ministerio de Sanidad, Spain) and by Generalitat de Catalunya (Centre de Referència en Biotecnologia).

References

- 1. Oliver, J. D. In *The Biology of Vibrios*; Thompson, F. L., Austin, B., Swings, J., Eds.; ASM Press: Washington, DC, 2006; pp 349–366.
- Marco-Noales, E.; Milan, M.; Fouz, B.; Sanjuán, E.; Amaro, C. Appl. Environ. Microbiol. 2001, 67, 4717–4725.
- 3. Valiente, E.; Amaro, C. Aquaculture 2006, 258, 173-179.

- Tison, D. L.; Nishibuchi, M.; Greenwood, J. D.; Seidler, R. J. Appl. Environ. Microbiol. 1982, 44, 640–646.
- Bisharat, N.; Agmon, V.; Finkelstein, R.; Raz, R.; Ben-Dror, G.; Lerner, L.; Soboh, S.; Colodner, R.; Cameron, D. N.; Wykstra, D. L.; Swerdlow, D. L.; Farmer, J. J., III Lancet 1999, 354, 1421–1424.
- 6. Fouz, B.; Larsen, J. L.; Amaro, C. J. Fish Dis. 2006, 29, 285-291.
- 7. Amaro, C.; Biosca, E. G. Appl. Environ. Microbiol. 1996, 62, 1454–1457.
- 8. Arbatsky, N. P.; Shashkov, A. S.; Toukach, F. V.; Moll, H.; Zych, K.; Knirel, Y. A.; Zähringer, U.; Sidorczyk, Z. Eur. J. Biochem. **1999**, 261, 392–397.
- Lipkind, G. M.; Shashkov, A. S.; Knirel, Y. A.; Vinogradov, E. V.; Kochetkov, N. K. Carbohydr. Res. 1988, 175, 59–75.
- 10. Whittaker, D. V.; Parolis, L. A. S.; Parolis, H. Carbohydr. Res. 1994, 256, 289-301.
- 11. Anderson, A. N.; Richards, J. C.; Perry, M. B. Carbohydr. Res. 1992, 237, 249–262.
- Gil-Serrano, A. M.; Rodríguez-Carvajal, M. A.; Tejero-Mateo, P.; Espartero, J. L.; Menendez, M.; Corzo, J.; Ruiz-Sainz, J. E.; Buendía-Clavería, A. M. Biochem. J. 1999, 342, 527–535.
- 13. Westphal, O.; Jann, K. Methods Carbohydr. Chem. 1965, 5, 83-91.
- 14. Leontein, K.; Lönngren, J. Methods Carbohydr. Chem. 1993, 9, 87-89.